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Abstract

The problem of dynamic output stabilization is a very general and important problem
in control theory. This problem is completely solved in the case where the system under
consideration is uniformly observable. However, usually, nonlinear systems do not share
this property: in general, systems are observable or not depending upon the control as
a function of time. In this general situation, very little is known about dynamic output
stabilization.
In this paper, we solve the problem for a classical academic kinematic model for drones
whose observability properties are especially bad.

Keywords. Control systems, dynamic output stabilization, asymptotic stability

1 Introduction

Dynamic output stabilization of a dynamical system is a classical problem from control theory.
If the stabilization is achievable with a state feedback law but only an output of the system
is known, a natural idea is to apply this feedback to an estimation of the state provided by
an observer. In the case of non-linear systems, this strategy was proved to be effective under
assumption of observability for all inputs, known as uniform observability [1, 2, 3, 4, 5, 6].
In full generality, however, uniform observability is generically not satisfied [5], including for
important classes such as state affine systems (bilinear dynamics with linear observation).
There may exist input controls that make the system unobservable and working around them
is a challenging task.

There have been attempts at building strategies for stabilization of poorly observable
systems [7, 8, 9]. These approaches, however, rely on time-varying feedback. A fundamental
and difficult problem is posed by the construction of time-invariant strategies relying only on
an estimate of the state.

In this paper, we present a case study where a strategy for dynamic output time-invariant
feedback stabilization is built around a well-studied model for drone dynamics. The aim of
this paper is not reduced to proving that this system is stabilizable. Rather, it illustrates
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Figure 1: Symmetries in the measured output cause some straight trajectories to be in-
distinguishable form each other. The plain and the dashed trajectories result in the same
measurement over time.

that observers can be built to be convergent even in the presence of observability singularities
in the system, and without prior knowledge of the feedback law. In [10], another example of
the same kind of problem is treated with similar methodology, and the reader is invited to
consult [11] where the general matter is discussed.

Our example is the following academic kinematic model of a fixed wings drone (or UAV),
flying at constant altitude, with constant linear velocity:

ẋ = cos θ,

ẏ = sin θ,

θ̇ = u, −umax ≤ u ≤ umax.

(1)

This system is a variation on the revered Dubins model [12, 13, 14] where (x, y)-trajectories
on the plane have a minimum possible radius of curvature 1/umax. It has been extensively
studied for the modeling of vehicles and fixed wings drones, especially in regards to trajectory
optimality [15, 16, 17, 18, 19, 20].

Endowed with the only information given by x2 + y2, the square of the distance to the
origin, we ask “is it possible to stabilize this system on a circular trajectory of minimal radius
1/umax around the origin?”

With full information, this poses no issue. However, the distance output is especially
poor in this context. Indeed, under the input u = 0, trajectories are straight and distance
measurements are indistinguishable under rotational and reflection symmetry in the plane
(see Figure 1). The reflection symmetry can imply (for instance) a switch from θ to −θ that
is not solvable by feedback design. Given a straight trajectory and the corresponding output,
it is not possible to know if the aircraft should steer left (u > 0) or right (u < 0) to the target.

Under these very poor observability constraints, classical output stabilisation theorems
cannot be applied. Nevertheless, we are able to prove the following statement.

Theorem 1 For any smooth feedback stabilizing at the target trajectory there exists a Luenberger-
type observer for system (1), for which the coupled closed loop state-observer system is asymp-
totically stable at the target, with an arbitrarily large basin of attraction.

Remark 1 Knowledge of the feedback law and the desired basin of attraction may appear to
be necessary for the specific choice of the Luenberger-type observer. We show in the following
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sections that the size of the basin of attraction is only dependent on the size of a positive tuning
parameter. Any bounded subdomain of the plane can be covered by the basin of attraction of the
coupled system if the tuning parameter is chosen large enough. Furthermore, for any choice
of the parameter, local stability is satisfied. Finally, and most importantly, no assumptions
on the relationship between the feedback law and the observability singularity at u = 0 need to
be made. Regularity and stabilizability are the only necessary assumptions.

The paper is organized as follows. In Section 2, we detail the problem and a state-affine
reduction. A precise statement of our result is given and discussed. In Section 3, we present
the proof of this result. In Section 4, we show some simulations and give some closing remarks
and perspectives.

In the following, X ′ denotes the transpose of any matrix or vector X.

2 State affine formulation

2.1 State affine embedding of the problem

The issue at hand is to stabilize system (1) at the origin. But what does it mean for a
drone with constant velocity? In fact, it is required that it reaches a limit motion of turning
around the target achieving a circle of minimal radius r = 1/umax.

This leads to the following reduction of the model. We define the target set T by

T = {(x, y, θ) | x = r sin θ, y = −r cos θ}. (2)

This set is travelled by the system under the input u = umax. Rather than considering
stabilization to T , a classical moving frame allows to reduce the dimension of this dynamical
system and collapse T to a single point in the plane. We set(

x̃
ỹ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
. (3)

In these new UAV-based coordinates (x̃, ỹ, θ), system (1) can be rewritten as{
˙̃x = u ỹ + 1,

˙̃y = −u x̃.
(4)

For a non-zero u ∈ [−umax, umax], system (4) possesses a single equilibrium (0,−1/u). In
particular for u = umax and u = −umax, they have equilibria (0,−r) and (0, r). They
correspond to the target set T being browsed counter-clockwise and clockwise respectively.
If u is changed for −u, the two equilibria are exchanged so we can indifferently consider one
among the two equilibria positions for stabilization. In these new coordinates, θ does not play
a role anymore. It can be preserved as an integrator of the control, but stabilization towards
T becomes a matter of stabilization to a point in the plane.

Consider for systems (1), (4), the following “minimum information output”, i.e. the square
distance to the origin:

ρ2 = x2 + y2 = x̃2 + ỹ2.

For t ∈ [0, T ], if (x(t), y(t), θ(t)) is a trajectory of (1) for an arbitrary input control u(t), it is
clear that

(x(t) cos θ0 − y(t) sin θ0, x(t) sin θ0 + y(t) cos θ0, θ(t) + θ0)
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is a trajectory of (1) with same input and same output.
This rotational symmetry implies that system (1) is not locally weakly observable in the

sense of [21]: close to any (x, y, θ), there is a continuum of points that are indistinguishable
to (x, y, θ) by the observations, whatever the input u(·).

Thanks to the system reduction, this is not the case for system (4) (in fact it is the quotient
of system (1) by the weak indistinguishability relation from [21]). However, system (4) is still
not observable for all inputs: for the constant control u ≡ 0, knowledge of the observation ρ2

allows reconstruction x̃ but ỹ can be reconstructed up to sign only. (This corresponds to the
situation shown in Figure 1)
Remark 2 Besides [21], one can check [22, 23, 24] for the general theory of quotienting
through unobservability. The reader can refer to [11] for a brief discussion of observability
singularities in the context of state-affine systems.

The observation space of system (4) is finite-dimensional. Following [25], it can be em-
bedded into a state-affine system. Here, we simply set z = (z1, z2, z3), z1 = x̃2 + ỹ2, z2 = x̃,
z3 = ỹ, and denoting the output by s, we get the bilinear system with linear observation{

ż = Az + uBz + b,

s = Cz, u ∈ [−umax, umax]
(5)

with A =

0 2 0
0 0 0
0 0 0

, B =

0 0 0
0 0 1
0 −1 0

, b =

0
1
0

 and C =
(
1 0 0

)
.

2.2 Main result

Since observation in the new state-affine system is linear, we introduce an observer ẑ with a
linear correction term in its dynamics

˙̂z = Aẑ + uBẑ + b−K(Cẑ − s). (6)

The choice of K and in general the design of the observer is open. Here we consider for
system (5) a “Luenberger-type” observer, that is, with constant correction term K. For our
purposes, we make the following choice for K: for some arbitrary α > 0,

K ′ =
(
α 2 0

)
.

A smooth stabilizing feedback at the target for (4) is a smooth map u : R2 → [−umax, umax]
such that the vector field (u(x, y)y+1)∂x−u(x, y)x∂y admits a globally asymptotically stable
equilibrium at (0,−r).

Stabilization of (1) can then be achieved by proving semi-global stability of the coupled
closed-loop system {

˙̂z = Aẑ + u(ẑ) Bẑ + b−KC(ẑ − z),
ż = Az + u(ẑ) Bz + b,

(7)

in which the state z is not arbitrary, but living inside the (invariant) manifold Z = {z | z1 =
z22 + z23}, and u(ẑ) = u(ẑ2, ẑ3). In particular, solutions to (7) evolve in R3×Z, and the target
corresponds to the equilibrium (z∗, z∗) with z∗ = (r2,−r, 0).
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Theorem 2 For any smooth stabilizing feedback at the target for system (4), for any bounded
set B in R3 ×Z, there exists α0 such that for all α > α0, system (7) is asymptotically stable
at (z∗, z∗) with basin of attraction containing B.

2.3 Discussion of the main result

Before moving on to the proof of Theorem 2, let us discuss some implications of this result.
First of all, this theorem answers the initial problem of stabilizing this kinematic drone

model with distance information. It is well understood (see, for instance, [26]) that global
feedback stabilization coupled with strong observability does not in general imply the possi-
bility of global dynamical output feedback stabilization. Only semi-global stabilization should
be expected.

The model is simple enough that one could design alternative approaches to this same
question quite effectively. However, we are interested in the theoretical challenge of building
a closed loop system for dynamic output stabilization under these very constraining observ-
ability conditions. Here, we were able to solve this problem without touching on the question
of feedback design, except for regularity assumptions. Smooth stabilizing feedback laws were
exhibited in [18].

The choice of the observer is free. Kalman-like observers are well adapted to time-
dependent bilinear systems [27, 28, 29], and the speed of convergence can be tuned, which
is useful for proving a separation principle. However strong observability assumptions are
required to efficiently evaluate this convergence (see, for instance, [5, Chapter 6, Section
2]). Proving any general result of dynamic output stabilization for bilinear systems that are
not strongly observable remains an open problem. Alternative strategies built on fast ob-
servers such as sliding mode are also of interest but face the same difficulties. Interestingly,
a Luenberger-type observer is enough here. This points toward the possible introduction of
linear matrix inequalities approaches.

3 Proof of the main result

As we explained in the previous section, our observer is a standard Luenberger-type observer
for system (5), given in (6) above.

Given the geometric constraints for (7), the coupled system satisfies in error-estimate
coordinates: 

ε̇ = (A+ u(ẑ)B −KC)ε,

˙̂z2 = ẑ3u(ẑ) + 1− 2Cε,

˙̂z3 = −ẑ2u(ẑ),

(8)

where ε is the estimation error, ε = ẑ − z, and u(ẑ) = u(ẑ2, ẑ3) is a stabilizing feedback law
for the system {

˙̂z2 = ẑ3u(ẑ) + 1,

˙̂z3 = −ẑ2u(ẑ).
(9)

The question, in the remaining of this paper, is the stability of this system at P ∗ ∈ R5,
where P ∗ is the point of coordinates {ε = 0, ẑ2 = 0, ẑ3 = −r} corresponding to the control
u = umax = 1/r.
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There are three steps to the proof of the (semi) global asymptotic stability of this coupled
system (8): proof of local asymptotic stability, proof that bounded trajectories go to the
target, proof that all trajectories starting in a given compact set are bounded.

3.1 Local asymptotic stability

We follow a classical scheme of proof. At the target point {ε = 0, ẑ2 = 0, ẑ3 = −r} the
linearized system is lower triangular.

Since KC = A′ + αe11, the linearization relative to the ε-part of the system is given by
ε̇ = (A−A′ + umaxB − αe11)ε where e11 denotes the 3× 3 matrix with coefficient in position
(1, 1) set to 1, and others to 0. Then ‖ε‖2 is a Lyapunov function for the sub-system, as

1

2

d

dt
‖ε‖2 = ε′Aε− ε′KCε = −αε21. (10)

Since the pair (C, (A−A′+umaxB−αe11)) is observable, this implies that 0 is an asymptotically
stable equilibrium by LaSalle’s theorem. In particular, this implies that the eigenvalues
relative to the ε-part all have negative real part.

Notice that the ẑ-diagonal block of the linearization of system (8) (i.e. forgetting about
ε) coincides with the linearization of the system (9). Since u is a feedback law stabilizing (9)
at (0,−r), its linearized can only have eigenvalues of non-positive real part.

Furthermore, the asymptotic stability of (9) implies the existence of a center manifold
for (9) at (0,−r) that we denote C (possibly empty if both eigenvalues of the linearized
system have strictly negative real part). If C is nonempty, C is an invariant manifold inside
the invariant manifold {ε = 0} for the coupled system (8). Since all other eigenvalues have
strictly negative real part, C is then also a (stable) center manifold for the full coupled system
(8). Hence we conclude at the asymptotic stability of the system at P ∗.

3.2 Bounded trajectories converge to the target

First, along a bounded trajectory (ε(t), ẑ(t)) of system (8), Cε(t) tends to zero. Indeed (10)
holds. Therefore, Cε(t) = ε1(t) is a L2 function over R+. Moreover, Cε(t) has bounded
derivative since ε̇1 = −αε1 + 2ε2 and we are considering a bounded trajectory. A L2 function
with bounded derivative tends to zero.

Looking at the ẑ-equation in (8), we see that in the ω-limit set Ω of the trajectory
(ε(t), ẑ2(t), ẑ3(t)), the (ẑ2, ẑ3) part of the system follows (9) again. This is the equation
of the feedback system, which is globally asymptotically stable by assumption. Hence, by the
general fact of invariance and closure of the ω-limit set, Ω contains at least one trajectory
such that ẑ2 ≡ 0, ẑ3 ≡ r.

Now, plugging u(ẑ) = −umax in the equation of ε, we see that Cε ≡ 0 (preserved along
trajectories in Ω) can only be achieved if ε ≡ 0 by observability of the system for −umax.
Thus (0, (0, r)) belongs to Ω and, therefore, the trajectory (ε(t), ẑ(t)) enters in finite time in
the basin of attraction of P ∗.
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3.3 All semi-trajectories are bounded

As shown in Section 3.2, we have (10). This implies that ε is bounded and Cε(t) = ε1(t) tends
to zero. But, ε̇1 = −αε1 + 2ε2. Hence

ε1(t) = e−αtε1(0) + 2

∫ t

0
e−α(t−s)ε2(s)ds

and

|ε1(t)| ≤ e−αt|ε1(0)|+ 2‖ε(0)‖
α

(1− e−αt).

Therefore, we have the following.

Lemma 1 For all ψ > 0, τ > 0 and η > 0 there exists ατ > 0 such that any semi-trajectory
(ε, ẑ) of (8) with α > ατ and ‖ε(0)‖ < ψ has |ε1(t)| < η for all t > τ .

Let V be a strict proper Lyapunov function for the feedback system (9). Such a Lyapunov
function can be obtained by applying inverse Lyapunov’s theorems (see, for instance, [30, 31]).

Let K be any compact subset of R5 (the state space of (8)) and let Π : R5 → R2 be the
projection on the two last components (ẑ2, ẑ3) (that are the estimates of (x̃1, x̃2) in (4)). Let
k ∈ N be a large enough integer such that Π(K) ⊂ Dk, where we denote the level sets of V
by

Dδ = {(x̃1, x̃2) | V (x̃1, x̃2) ≤ δ}.

Let ψ > 0 be such that K ⊂ [−ψ,ψ]3 × Dk. Notice that the vector field (u(x, y)y + 1 −
2ε1)∂x − u(x, y)x∂y is uniformly bounded with respect to |ε1| ≤ ψ on Dk+1. We denote by
R > 0 a uniform bound on the norm of the vector field. Then by setting

τ =
1

R+ 1
dist(Dk, Dk+1) > 0,

we have that if ζ is a semi-trajectory of (8) starting in K, then Π(ζ(t)) remains in the interior
of Dk+1 for all t ∈ [0, τ ], since the norm R of the velocity vector ( ˙̃x1, ˙̃x2) is small enough for
that.

This fact is independent on the choice of α since the bound R is uniform and ε1 is
decreasing.

Denoting f(x, y) = (u(x, y)y + 1)∂x − u(x, y)x∂y and Lf the Lie-derivative with respect
to the vector field f , let

m = inf
Dk+1\Dk

|LfV | > 0.

As a consequence of Lemma (1), we can choose α > 0 such that any semi-trajectory ζ of (8)
with ζ(0) ∈ K, satisfies

2|ε1(t)| sup
Dk+1\Dk

∣∣∣∣ ∂V∂x̃1
∣∣∣∣ < m, ∀t > τ.

This implies that if Π(ζ(t)) ∈ Dk+1 \Dk at t > τ , then d
dtV (ẑ2, ẑ3) < 0.

However, if there exists t > 0 such that Π(ζ(t)) /∈ Dk+1, this implies the existence of a
time t′ ∈ (τ, t) such that Π(ζ(t′)) ∈ Dk+1 and

d

dt
V (ẑ2, ẑ3)|t=t′ > 0,
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Figure 2: Simulations of the output feedback stabilization strategy, in both original and
moving frame coordinates. The left column corresponds to α = 30 and the right column
to α = 0.5. The plain curve corresponds to the state of the system while the dashed curve
corresponds to the observer.

which we excluded. Therefore, (ẑ2, ẑ3) remains in Dk+1 for ever. We already know that ε(t)
is bounded. Hence, the full trajectory is bounded.

This ends the proof of Theorem 2.

4 Conclusion and perspectives

We show two simulations in which we used the smooth stabilizing feedback control law from
[18, Theorem 2.2] relative to system (4). The first simulation is with large α (α = 30),
the second with small α (α = 0.5), see Figure 2. Both are taken with initial conditions
(x0, y0, θ0) = (3, 5, π/4) and ẑ0 = (−7, 5, 4). On the top line of the figure are represented the
trajectories of the drone (1) in the (x, y)-plane. On the bottom are represented the trajectories
of the reduced system (4) together with the corresponding observer state estimate. The strong
inobservability value u = 0 is actually crossed, at inflexion points of the trajectory.

To finish, we would like to point out the challenge presented by practical output stabiliza-
tion of control systems in the unobservable case. Here we have treated a case where the target
point is an observable point, and showed that after state-affine embedding, a Luenberger-type
observer was converging reliably enough to allow a separation principle to take place. We refer
to [10] for a case where the target control makes the system unobservable. It is particularly
challenging to consider, for unobservable bilinear or bilinearizable systems, the coupling of a
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stabilizing feedback law with a Kalman-type observer. Such a result would be very important.
For what regards this particular kinematic drone model, since straight trajectories can be

time optimal, we consider the coupling of the observability problem with the minimum time
optimal synthesis a particularly interesting question worthy of further research.
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