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Abstract

This paper investigates the online estimation of neural activity within the primary visual
cortex (V1) in the framework of observability theory. We focus on a low-dimensional neural
fields modeling hypercolumnar activity to describe activity in V1. We utilize the average
cortical activity over V1 as measurement. Our contributions include detailing the model’s
observability singularities and developing a hybrid high-gain observer that achieves, under
specific excitation conditions, practical convergence while maintaining asymptotic convergence
in cases of biological relevance. The study emphasizes the intrinsic link between the model’s
non-linear nature and its observability. We also present numerical experiments highlighting
the different properties of the observer.

1 Introduction

Having techniques to estimate online the neural activity of certain cortical areas has many potential
uses. This can range from monitoring and treating brain health [21] to applications in neuroscience,
such as psychology [11], brain-computer interfacing [9], or the analysis of specific neural phenomena
such as visual illusions [23]. Recently, this has opened the door to the design of control theory
inspired techniques, feedback-loop control such as in the fields brain-machine interface [29] and
deep brain stimulation [24]. For instance, stabilization of signals in the brain via feedback control
can be used to alleviate Parkinson’s disease symptoms [20]. In most practical cases, neural activity
can only be partially measured. It may then be crucial to be able to provide efficient and reliable
online estimation methods based on measurements [12, 11, 26].

In the present study, we focus on models where the neuronal activity is a distribution over
space evolving in time according to well known neural fields equations. These models rely on
integro-differential equations obtained by averaging the activity of large groups of neurons in
the brain. They were introduced in the seminal works [2, 3] and provide a powerful theoretical
framework for studying brain activity. See [22] for comparison of different large scale models of
neuronal activity, [32] for a review of neural fields models and [16, 18] for a more in depth analysis
of these equations. These models have a rich history of application, particularly in the study of
the primary visual cortex V1 [8, 4, 16], and in particular for explaining visual illusions [27, 28,
33, 14]. They have also demonstrated the capability to replicate numerous phenomena observed
in experimental data, often acquired through voltage-sensitive dye (VSD) imaging, see [8, 13, 25]
for example.

The focus of this paper is on state estimation for a low dimensional model of V1 introduced in
[8]. This particular model incorporates many characteristic properties of the ring model introduced
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in [4] and demonstrates a noteworthy ability to accommodate qualitatively for experimental data,
on orientation and selectivity, as shown in [25]. To reflect the limitations of standard physical
measurement in the cortex, as those obtained via electrodes, we consider distributed measurements
and in particular the average voltage within the area of interest.

To achieve our state estimation objective, we approach neural fields models as input-output
systems. This perspective allows us to leverage the formalism of control theory, particularly the
concept of observers. Observers, in this context, are dynamical systems designed to provide online
estimates online of the state. See [30] for a review on observer theory for continuous dynamical
system. From the standpoint of observability, the considered model introduces distinct challenges
as a non-linear system. Indeed, the system may not be observable at all times, due to the state
crossing some singular regions. We propose an hybrid observer design which accounts for these
difficulties. This approach allows for practical state estimation in regions where observability
is hindered, and guarantees tunable exponential asymptotic convergence for cases of biological
relevance.

The application to neural fields model of observability theory is quite recent. Up to our
knowledge, the only study in this direction is [31] which proposes an adaptive observer for a certain
neural fields equation. In that paper, the authors consider two interconnected cortical zones, one
of which is thoroughly measured. Their observer design is then based on the contractivity of the
dynamics of the un-measured zone and a persistence of excitation condition.

The paper is structured as follows. In Section 2 we present the neural fields model of V1 that is
the focus of the observer study and establish the precise 3-D model used in the sequel. In Section 3
we present the results we obtain in the paper, first on observability properties of the system, then
on our tunable observer, whose precise design is to be found in Sections 5 and 6. The technical
part of the paper is divided into three sections. First, Section 4 contains technical preliminaries.
Then in Section 5 we prove the main results regarding observability and give the construction of
a pseudo-inverse needed in the observer. Finally in Section 6 we prove the main properties of the
observer. In the last section, Section 7, we discuss a numerical simulation of the observer.

2 Modelisation

In this section, following the steps in [8], we present a neural field models of V1 and the necessary
steps to obtain the low dimensional model on which the observer is constructed.

2.1 General model on V1

The goal of the present study is to estimate the post-membrane potential over the visual cortex V1
represented by a bounded open set Ω̂ ⊂ R2. We denote by V (x, t) ∈ R the average post-membrane
potential at a point x ∈ Ω̂ at a time t. The evolution of V is modeled by a single-layer neural field
equation (see e.g., [32]){

τ∂tV (x, t) = −V (x, t) + J · σ(V (·, t))(x) + Iext(x, t),

V (0) ∈ L2(Ω̂).
(1)

Here, Iext ∈ L∞(R, L2(Ω̂))∩C0(R, L2(Ω̂)) denotes the external input, τ > 0 the temporal synaptic
constant. The operator J models the neuronal interaction and is given by an integral kernel
j(·, ·) ∈ L∞(Ω̂× Ω̂) through the expression

J · u(x) =
∫
Ω̂

j(x, y)u(y)dy, u ∈ L2(Ω̂). (2)

The firing rate function σ : R → R models how a population “charges” or “discharges” and is
typically chosen to be a smooth sigmoidal function. Equation (1) is well defined and has a unique
global solution for each initial condition V (·, 0) ∈ L2(Ω̂) which has the same regularity as Iext.
See [16, 15] for instance.
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In this work we will assume1 σ to satisfy the following.

Assumption 2.1. The function σ is a C∞(R,R) function that is odd, strictly increasing (i.e.,
σ′ > 0), convex-concave (i.e., xσ′′(x) ≤ 0 for all x ∈ R), and such that

lim
x→−∞

σ(x) = −1, σ(0) = 0, lim
x→+∞

σ(x) = 1, max
R

σ′ = σ′(0). (3)

We are interested in the observability and observer design problem for solutions of (1). As
mentioned, we consider as measurement the cortical activity averaged over the whole domain, as
represented by the function

h(V (·, t)) =
∫
Ω̂

V (x, t) dx. (4)

In the context of our study, the observability problem pertains to determining whether the
internal state of a neural field, described by (1), can be fully inferred from the cortical activity
measurements averaged over the domain, as defined by (4). Formally, this problem explores the
feasibility of reconstructing the neural field’s dynamic state V (x, t) solely from the output y(t).
The observer design problem involves creating a system to estimate the internal state of a model
based on the output y.

The non-linearity of the sigmoid function σ plays a crucial role in the observability of the
system. In the hypothetical case where σ was linear, the dynamics of t 7→ h ◦ V (·, t) will feature
only the compositions of h ◦ V (·, t) and the system’s inherent constants. rendering Equation (1)
non-observable. It is precisely the non-linear characteristics of σ that enable us to differentiate
between potential solutions.

Remark 2.2. Equation (1) is what is called in the literature a voltage based model, whereas the
original models in [4] and [8] are activity based models. We find this formulation more convenient
for mathematical analysis. Moreover, as we can always transition from an activity based model to
a voltage-based one via an adequate change of variables, our results can be applied to the former.
See Appendix A.

2.2 Finite-dimensional reduction in V1

From [8], since the experimental solutions tends to be unimodal, we follow the steps introduced
in the article to obtain a reduced model. We are interested in two features encoded by neurons
in V1: orientation θ ∈ [−π

2 ,
π
2 ) and selectivity preference r ∈ [0,∞) [1]. Mainly, we assume that

there exists a polar mapping Φ : x ∈ Ω̂ 7→ (rx, θx) ∈ Ω := [0,+∞) × [−π/2, π/2). See Figure 1b.
Henceforth, we will work on (1) in the coordinates induced by Φ.

The polar mapping Φ induces a change of measure:

dx = P (r, θ)drdθ,

where P (r, θ) = c |det(∂r,θΦ−1)|/|Ω̂| and c > 0 is a normalization constant making P a probability
density. Following [4] and [8], we suppose that the distribution over orientation preference is

uniform, i.e that cortex handle all orientations similarly, obtaining then that P (r, θ) = P (r)
π . Since

neuronal selectivity ranges in a finite interval, we henceforth assume P to have compact support.
Following the steps in [8] and [15], we look for an operator J in (2) such that the experimentally

observed cortical stationary states at rest (Iext = 0) are in its range. Since these stationary states
tends to be unimodal i.e. a single dominant fourier mode, we can then well approximate the
connectivity kernel by :

j(x, y) = J0 + J1rxry cos(2(θx − θy)), J1 > 0, J0 ̸= 0. (5)

See [8] and [17][Chapter 10]. Here, the parameters J0 and J1 encode, respectively, the strength of
global inhibition or excitation and the strength of the connectivity. As J is a compact self-adjoint

1See Appendix A, for a discussion on the adjustments required to adapt the ensuing ensuing analysis to the case
of strictly positive sigmoids and/or the presence of thresholds h0, i.e., σ(· − h0).
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(a) Comprehensive orientation preference (OP)
map in V1 visualized through optical imaging,
depicting the spatial distribution of orientation-
selective neurons. See [5].

(b) Orientation preference and selectivity
mapping in the visual cortex V1, showing
angular preference (top) and selectivity in-
dex (bottom) with key orientation angles
highlighted. Here the values of the selec-
tivity have been normalized. See [25].

Figure 1: Visual cortical mapping of orientation preference and selectivity in V1 region: (a) illus-
trates a comprehensive view of orientation-selective neuronal distribution through optical imaging,
and (b) presents a detailed analysis of orientation preference and selectivity, with emphasis on the
normalized selectivity index and key angular orientations.

operator, using that for any U(·, t) ∈ L2(Ω̂), U = U∥ + U⊥, where U∥ ∈ range(J), Equation (1)
splits into {

τ V̇ ∥ = −V ∥ + J · σ(V ∥ + V ⊥) + I∥,

τ V̇ ⊥ = −V ⊥ + I⊥,
(6)

with
V ∥(rx, θx, t) = v0(t) + v1(t)rx cos(2θx) + v2(t)rx sin(2θx). (7)

Setting the input such that I⊥ is negligible, V ⊥ converges exponentially towards 0. We henceforth
assume I⊥ = 0 and set V = V ∥.

Finally, observe that the measurement h is recast in the following form

h(V (·, t)) = v0(t), (8)

Remark 2.3. Observe that we can also obtain the same measurement by a well placed electrode
centered around a pinwheel, i.e. any point x0 ∈ R2 that verifies rx0 = 0. Indeed we have using (7)

⟨V (·, t), δx0
⟩ = v0(t). (9)
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2.3 Main model of study

The observations of the previous section allow us to reduce the infinite dimensional equation (1)
to the following finite dimensional ODE for v = (v0, v1, v2) ∈ R3

τ v̇0 = −v0 + J0
∫
Ω
σ(V (r, θ, v))P (r)

π dθdr + I0(t) := f0(v, I(t)),

τ v̇1 = −v1 + J1
∫
Ω
r cos(2θ)σ(V (r, θ, v)) P (r)

π dθdr + I1(t) := f1(v, I(t)),

τ v̇2 = −v2 + J1
∫
Ω
r sin(2θ)σ(V (r, θ, v)) P (r)

π dθdr + I2(t) := f2(v, I(t)).

(10)

Here, J0 and J1 are real non-zero parameters of the system, I = (I0, I1, I2) is the external input,
which we assume to be at least continuous, P (·) is a compactly supported probability density over
[0,+∞), Ω = [0,+∞)× [−π/2, π/2), and V (r, θ, v) is the neuronal activity given by

V (r, θ, v) = v0 + rv1 cos(2θ) + rv2 sin(2θ). (11)

The ouptut is, at each time, the space average of this neuronal activity, hence y = h ◦ v with
h : R3 → R defined by

h(v0.v1, v2) = v0 , i.e. y = v0 . (12)

As τ > 0 does not interfere in our study of the observability, we set τ = 1 from here to ease
the proofs.

Concerning the existence and the maximal bound of the solutions, we have the following
proposition, the proof of which is found in Section 4

Proposition 2.4. Assume I ∈ C0([0,+∞)). The dynamics (10) admit a unique global solution
v defined on R for every initial condition v(0) ∈ R3. Moreover, if supt ||I|| < ∞, then there exist
R∗ > 0, such that for any R ≥ R∗, BR3(0, R) is an invariant attracting set by the dynamic f .

Remark 2.5. In the case where P is a Dirac mass, (10) reduces to the ring model introduced in [4].
Observe also that the assumption of compact support for P is not essential. Indeed, our analysis
applies as soon as P admits moments up to the second order.

Notation. We denote any X ∈ R3 as X = (X0, X1, X2)
⊤. Moreover, we let X1:2 ∈ R2 be the

vector composed of the two last elements, i.e., X1:2 = (X1, X2)
⊤. We denote also by f(v, I(t)) =

(f0(v, I(t)), f1(v, I(t)), f2(v, I(t))) the right hand side of equation (10).

3 Statement of the results

In this section, we present the results achieved in the paper. In a first step we discuss the
dynamical properties of the system in connection with observability of the state. Then we propose
an estimation method and present its convergence properties under different assumptions.

3.1 Observability

Here, we investigate the observability properties of (10)-(12). We first consider the simplest notion
of observability, namely to what extent an output t 7→ y(t), for a prescribed input t 7→ I(t), can
be produced by only one solution t 7→ v(t). This is called (instantaneous) observability in [30,
Section 3.1.2] or [7, Chap. 2, Defn. 1.2].

The following preliminary proposition states that observability does not hold when v0 is zero
and gives, away from {v0 = 0}, the “maximum information” that can be extracted from the
knowledge of the output y(.) without any assumption on the input I(·).

Proposition 3.1. We have the following.
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(i) Let I ∈ C0([0,∞),R3) such that I0 = 0. The output h◦v = v0 of any solution v of (10) with
initial condition v(0) = (0, v1(0), v2(0))

⊤ ∈ R3 is identically null. In this particular case,
there exist v and v̂ solutions of (10) such that

h(v(t)) = h(v̂(t)) and v(t) ̸= v̂(t), ∀t ≥ 0. (13)

(ii) Let v and ṽ be two solutions of (10) such that h(v(t)) = h(ṽ(t)) for all t in an interval [0, t∗],
for some t∗ > 0. Then, for any time t′ ∈ [0, t∗] such that h(v(t′)) ̸= 0 we have

|v1:2(t′)| = |ṽ1:2(t′)| and v(t′)⊤1:2I1:2(t
′) = ṽ(t′)⊤1:2I1:2(t

′). (14)

Let us now state two more precise results that elaborate on Points (i) and (ii) above, starting
with Point (i), that tells us that observability does not hold in the set Z0 := {v ∈ R3 : v0 = 0},
and that Z0 is invariant by the dynamics if the first component of the input is identically zero.
Importantly, as the output under consideration is v0, the value of the output tells us how close the
state v is from Z0. Since we need to build an observer that tolerates trajectories passing through
Z0, Proposition 3.2 below, proved in Section 5.1, states that, under the assumption that the first
component of the input is bounded from below, trajectories may pass through Z0 only once and
gives an estimate of the time a solution passes “close to” that set. Note that this assumption is
often made in the literature, see e.g. [15].

Proposition 3.2. Consider an input I : [0,+∞) → R3 such that I0(t) ≥ c > 0 for all t ≥ 0, and
a solution v(·) of (10) associated to this input. Let

δ∗ =
c

1 + |J0|σ′(0)
, (15)

and fix some δ, 0 < δ < δ∗. The first component v0(t) of the solution vanishes at most one time,
and the set of times t such that |v0(t)| ≤ δ is a time-interval of length no larger than tδ given by

tδ =
δ∗

c

2δ

δ∗ − δ
. (16)

Moreover, if there exist a time t∗ ≥ 0 such that v0(t
∗) ≥ δ, then v(t) ≥ δ for all times t ≥ t∗.

Remark 3.3. If the parameter J0 is negative and I0(t) > c > 0 the flow of v0 is always positive
when v0 takes negative values. The proposition above is there solely to treat the case J0 > 0.

Point (ii) in Proposition 3.1 states partial observability; it is completed by Proposition 3.4
below under proper conditions on I1:2.

Proposition 3.4. Consider an input I : [0,+∞) → R3 such that I0(t) ≥ c > 0 for all t ≥ 0. For
any t∗ > 0, the two following assertions are equivalent

(i) For any two solutions v and ṽ of (10) associated to this input,

h(v(t)) = h(ṽ(t)) ∀t ∈ [0, t∗] =⇒ v(t) = ṽ(t) ∀t ∈ [0,∞). (17)

(ii) There exists t ∈ [0, t∗] such that I1:2(t) ∧ İ1:2(t) ̸= 0.

Here, a ∧ b denotes the determinant of the matrix [a; b] for any vector a, b of R2

The proof of the above results relies on considerations regarding a stronger form of observability
on our model, often called differential obervability [30, 7], that requires that the value of a certain
number of time-derivatives of the output y = h(v(t)) at some time t uniquely determines the value
of the state v(t) at the same time. The time derivative is given by the differential operator L,
also called “total derivative” along the time-varying differential equation (10) (see e.g., [30]), that
maps a real-valued function g ∈ Ck(R3 × R) to Lg ∈ Ck−1(R3 × R,R) defined by

Lg(v, t) = f0(v, I(t))∂v0g(v, t) + f1(v, I(t))∂v1g(v, t) + f2(v, I(t))∂v2g(v, t) + ∂tg(v, t) . (18)
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Note that the input I(·) is fixed and sufficiently smooth; a different I(·) defines a different differ-
ential operator L. Hinting that the number of time-derivatives needed is no larger than three, we
study the time-dependant mapping v 7→ Tt(v) defined, for all t in [0,+∞), by

Tt(v) =


h(v)

Lh (v, t)
L2h (v, t)
L3h (v, t)

 , (19)

The map Tt is often called the observability mapping at time t, indeed its injectivity implies
the aforementioned differential observability. The following proposition is our main result on
differential observability of (10)-(12). It is proved in Section 5.1. Define the sets

Z0 = {v ∈ R3 : v0 = 0}, Z1:2 = {v ∈ R3 | v1 = v2 = 0}, Z := Z1:2 ∪ Z0 . (20)

Theorem 3.5. Assume I ∈ C2([0,+∞),R3). Let t ≥ 0 be such that I1:2(t) ∧ İ1:2(t) ̸= 0.

• The map Tt : R3 \ Z0 → R4 is an injection.

• The map Tt : R3 \ Z → R4 is an injective immersion.

The loss of injectivity in the singular region Z0 is related to the loss of observability in
Proposition 3.1. The first point implies that the restriction of Tt to R3 \ Z0 has an inverse
Tt(R3 \ Z0) → R3 \ Z0; the second point implies that this inverse is differentiable on Tt(R3 \ Z).
In fact this inverse is continuous, but fails to be locally Lipschitz continuous at images of points
in Z1:2.

Remark 3.6. Model (10) has been introduced in [8] to accommodate for experimental solutions
obtained through VSD. These solutions always verify that

∃η∗ > 0, tη∗ > 0, |v1:2| ≥ η∗, ∀ t ≥ tη∗ . (21)

In the next section, we discuss a tunable observer that verifies exponential asymptotic convergence
for solutions verifying (21), while keeping some form of practical convergence for solutions that
do not. We observe that appropriately chosen inputs and parameters may produce solutions that
cross the region Z1:2 for arbitrarily large times.

In light of the above discussion, we define the following family of tubular neighborhoods of Z,
indexed by two parameters δ > 0, η > 0:

Zδ,η := {v ∈ R3 : |v0| < δ} ∪ {v ∈ R3 : |v1:2| < η}. (22)

The restriction of the inverse of Tt to a bounded part of Tt(R3 \ Zδ,η) will have a global Lipschitz
constant.

Let us now derive from the above observability conditions an assumption that will be useful
for designing an observer in next subsection. We saw in Proposition 3.2 that the trajectories cross
the non observalility locus {v0 = 0} at most once if I0 stays away from zero and in Proposition 3.4
that observability occurs when v0 and I1:2 ∧ İ1:2 stay away from zero; in view of these points, we
make the following assumption on the input, for the rest of the paper.

Assumption 3.7. The input t 7→ I(t) is in C3([0,+∞),R3) and is bounded on [0,+∞), as well
as its time-derivatives of order up to three, and the following lower bounds hold for some positive
numbers c and µ:

I0(t) ≥ c > 0 and |I1:2(t) ∧ İ1:2(t)| ≥ µ > 0 for all t in [0,+∞). (23)

Remark 3.8. The same results in this paper can be obtained by assuming |I0(t)| ≥ c rather than
I0(t) > c. The positive sign of I0 in the first relation in (23) is chosen to facilitate the exposition.
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Remark 3.9. The second condition in (23) is a stricter version of the standard lower bound for
persistence of excitation-type conditions

∃µ∗, t∗ > 0, ∀t0 > 0,
1

t∗

∫ t0+t∗

t0

I1:2(t)
⊤I1:2(t)dt ⪰ µ∗ Id2×2, (24)

where Id2×2 denotes the identity matrix of dimension 2.

3.2 Observer design

In this section, we propose an observer based on the high-gain construction [30, 7] that takes into
account the observability difficulties encountered in the model. Using the notations of previous
section, the mapping (t, v) 7→ Tt(v) is structured to satisfy the following condition for all v ∈ R3

and t ∈ R:
∂vTt(v, t)f(v, I(t)) + ∂tT (v, t) = ATt(v, t) + WL4h(v, t), (25)

where A and W are matrices defined as:

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , W =


0
0
0
1

 . (26)

The next step involves defining a Lipschitz pseudo-inverse Tt for Tt at any given time t ≥ 0. This
pseudo-inverse is essential for extracting v(t) from the values z(t) = Tt(v(t)) and to make so that
only terms depending on z appears in the right-hand side of (25). A high-gain can then be designed
which estimates the value of z(t) = Tt(v(t)) for any solutions v of (10) based on its output y. The
efficacy of this design hinges on existence of a pseudo-inverse of Tt which is Lipschitz, ensuring the
observer’s accurate and stable convergence. For this design to be feasible,some form of differential
observability is required as mentioned in the previous section. Further details on this construction
can be found in [10] for example.

Within the established framework, let us now construct, for each time t ≥ 0, a globally Lipschitz
continuous mapping denoted as Tt, serving as a left inverse to the observability mapping Tt within
the set Zc

δ,η ∩ BR3(0, R) 2, where R is a sufficiently large constant, 0 < η < R, and 0 < δ < δ∗,
where δ∗ is defined in Proposition 3.2. The validity of Proposition 2.4 is invoked to affirm the
existence of an arbitrarily large R > 0, ensuring that BR3(0, R) constitutes an invariant attracting
set for the system described by equation (10). Subsequently, the use of a projection map alongside
the inherent symmetry of the non-linear term in (10) is employed to broaden the definition of Tt

across the entire domain R4 at any time t ≥ 0. This is encapsulated within the following theorem,
the proof of which is given in Section 5.2. See (73) for the explicit expression of Tt.

Theorem 3.10. Suppose that Assumption 3.7 holds. Let δ > 0, 0 < η < R. Then, for any output
y = h ◦ v, there exists a map

T : R4 × [0,+∞) → {(u0, u1, u2) ∈ R3, δ ≤ |u0| ≤ R and η ≤ |u1:2| ≤ R2}, (27)

such that Tt = T(·, t) is globally Lipschitz continuous uniformly with respect to t, and satisfies

|Tt(Tt(u))− u| ≤ ηχ(u), ∀u ∈ Zc
δ,η ∩BR3(0, R) such that u0y(t) > 0, |u0| ≥ δ (28)

where

χ(v) :=

{
0 |v1:2| ≥ η,

1 otherwise.
(29)

2Zc
δ,η denotes the complement of the set Zδ,η .
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We propose now the following observer which takes into account the consideration of Re-
mark 3.6.

Let be 0 < δ < δ∗ where δ∗ is defined in Proposition 3.2, 0 < η < R, l ≥ 1. Let C =

(1, 0, 0, 0) ∈ R1×4 and Pl(i, j) :=
(−1)i+j

li+j−1 · (i+j−2)!
(i−1)!(j−1)! . Considering y = h ◦ v, where v is a solution

of (10), we study a tunable state observer, piece-wise defined as follows:{
v̂(t) = Tt(ẑ(t)), ˙̂z(t) = Aẑ(t) + L4h(Tt(ẑ(t)))W − P−1

l C⊤(Cẑ(t)− y(t)), if |y(t)| > δ,
˙̂v(t) = f(v̂, t), ẑ(t) = Tt(v̂(t)) if |y(t)| < δ.

(30)
This observer is a hybrid system where simple rules, governed by the sign of |y(t)| − δ, switch

the dynamics between two time-varying continuous-time dynamical systems (explicit dependence
on time comes from I and y, whose evolution does not depend on the observer), with states ẑ ∈ R4

and v̂ ∈ R3. Without resorting to a general framework for hybrid systems (see e.g. [6]), let us
make clear what a solution of this system is.

The initial condition is given by some ẑ(0) ∈ R4 if |y(0)| > δ (or |y(0)| = δ and |y(t))| > δ for
small positive t), and by some v̂(0) ∈ R3 if |y(0)| < δ or |y(0)| = δ and |y(t))| < δ for small positive
t. We show in Proposition 3.11 that the solutions of the corresponding ODE are well-defined until
the first time where |y(t)| − δ changes sign.

Proposition 3.2 tells us that |y(t)| − δ changes sign at most twice on [0,+∞); we have to
describe the jumps between state spaces at such a time t⋆ (either t1 or t2 from Proposition 3.2) to
be complete. Let t⋆ be the first such time. If |y(t)| ≥ δ on [0, t⋆], |y(t)| > δ on some [t⋆−ε, t⋆), the
solution ẑ(t) of the first line of (30) is well defined on some [0, t⋆+ε] so that it has a limit at t = t⋆,
that we may denote by ẑ(t−⋆ ); the solution to the hybrid system (30) is continued by initializing
the second differential equation with state v̂ according to v̂(t−⋆ ) = Tt(ẑ(t

−
⋆ )) on the next interval

where |y(t)| − δ is negative; similarly, if |y(t)| < δ on some [t⋆ − ε, t⋆) (and |y(t)| > δ on some
(t⋆, t⋆ + ε]), the initialization in the new state space is made according to ẑ(t−⋆ ) = Tt(v̂(t

−
⋆ )).

Henceforth, with a slight abuse of language, we refer to v̂ as the solution of (30). We can now
state the following, which is proven in Section 6

Proposition 3.11. For any δ < δ∗, with δ∗ given by (15) in Proposition 3.2, any 0 < η < R,
solutions of (30) are defined globally, piece-wise continuous, with v̂ having at most a single jump.

Theorem 3.12. Suppose Assumption 3.7 holds. For any R > R∗, where R∗ is defined in Propo-
sition 2.4, for any v solution of (10) with output y = v0, and such that v(0) ∈ BR3(0, R), we have
the following.

(i) For any δ < δ∗, where δ∗ is defined by (15) in Proposition 3.2, 0 < η < R, there exist l∗,
M > 0, L > 0 such that for any l ≥ 1, any interval [t0, tf ] where |y(t)| ≥ δ for t ∈ [t0, tf ],
we have for any solution v̂ of (30) with initial conditions v̂(0) ∈ R3 and ẑ(0) = T0(v̂(0)), it
holds for any time t0 ≤ t < tf

|v(t)−v̂(t)| ≤ ηχ(v(t))+Me−(l−l∗)(t−t0)

(
l3|ẑ(t0))−Tt0(v(t0))|+

∫ t

t0

e(l−l∗)(s−t0)Lηχ(v(s)) ds

)
(31)

where χ is defined by (29) in Theorem 3.10. Moreover, there exists L2 > 0 such that if the
the switching interval S = {t ≥ 0 : |y(t)| < δ} is non-empty, letting t1 = inf S, it holds

|v(t)− v̂(t)| ≤ eL2(t−t1)|v̂(t1)− v(t1)|, t ∈ S, (32)

(ii) Suppose that there exist η∗ > 0 such that |v1:2(t)| ≥ η∗, ∀t ≥ 0. Then for η = η∗, 0 < δ < δ∗,
there exist l∗ > 0, M > 0 and k > 0 such that for any l ≥ l∗ for any solution v̂ of (30) with
initial conditions v̂(0) ∈ R3 and ẑ(0) = T0(v̂(0)), it holds

|v̂ − v| ≤ k|v(0)− v̂(0)|e−(l−l∗)t, t ≥ 0. (33)
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(iii) For any time t∗ > 0, any compact K ⊂ R3, and any ε > 0, there exist δ > 0, η > 0, l > l∗

sufficiently large such that for any solution v̂ of (30) with initial conditions v̂(0) ∈ K and
ẑ(0) = T0(v̂(0)), letting t2 := inf{t ≥ 0, y(t) = δ} = supS, it holds

|v̂(t)− v(t)| ≤ ε, t ∈ [t∗, t2] ∪ (t2 + t∗,∞). (34)

Let us comment on this theorem. We described in Section 3.1 a certain number of observability
losses in our model (10)-(12); these occur for certain behaviors of the input and in some regions
of the state space. Our approach has been to make assumptions on the input —this is Assump-
tion 3.7— but to then proceed with crafting an ad-hoc versatile observer —this is (30), based on
the pseudo-inverse whose properties are described by Theorem 3.10— capable of achieving tunable
exponential convergence when the state trajectory stays away from the identified singularities, or
do not approach them “too often”, while also ensuring acceptable performance for any other space
trajectories. Let us detail and comment these properties, stated formally above.

• Solutions of the observer are defined for all time for any initial condition, for any state
trajectory of the system, this is Proposition 3.11.

• It provides tunable exponential convergence when the state trajectory stays in some region
{|v1:2| > η∗ > 0}; this is point (ii) of the theorem. Note that the hybrid construction
allows us to preserve exponential convergence through one possible passage through the
non-obervability locus {v0 = 0}. We explain in Remark 3.6 to what extent these state
trajectories are the ones of biological relevance. One might chose to see this point as the
main result. We refer the reader to Section 7 for an example of such a trajectory.

• It provides rougher practical convergence when the state trajectory keeps passing in the
“bad regions” as time grows; this is point (iii) that gives an estimate that holds except on a
possible (arbitrarily small) time interval where |v0| is small.

Point (i) gives an explicit bound on the error taking into account all contributions, without making
any assumption on the state trajectory; this bound is possibly difficult to interpret but is necessary
for completeness. The other points may be deduced from the general estimations (31) and (32).

4 Technical preliminaries

In this section, we prove the main properties of system (10) and the observability mapping T
introduced in (19). We first start by proving the global existence of the solutions of (10) and the
existence of attracting sets for this system.

Proof of Proposition 2.4. Recall that the function σ is Lipschitz continuous with Lipschitz con-
stant σ′(0). Hence, letting w = (1, r cos(2θ), r sin(2θ))⊤, we have for v, ṽ ∈ R3:

|σ(w⊤v)− σ(w⊤ṽ)| ≤ σ′(0)
√
1 + r2 |v − ṽ|. (35)

We therefore obtain,

|f(v, t)− f(ṽ, t)| ≤
∣∣ −1 +

√
(J2

0 + 2J2
1 )

∫
[0,∞)

σ′(0)(1 + r2)P (r)dr
∣∣ |v − v̂|, (36)

which is then bounded uniformly on time as P is compactly supported by assumption. Therefore
solutions of (10) are well defined for every time.

Let now v be solution of (10). Using the fact that σ is bounded by 1, we have that:

v̇⊤v =
1

2

d|v|2

dt
≤ −|v|2 +

(√
(J2

0 + 2J2
1 )

∫
R

(
√

1 + r2P (r)dr + sup
t

||I||
)
|v|,

as the integral term is uniformly bounded. Therefore, if supt ||I|| < ∞ there exist R∗ > 0 large
enough such that for any R ≥ R∗, if |v| > R we have v̇⊤v < 0.

10



To study the observability mapping T , we utilise the O(2) symmetry of the non-linear part of
(10) and therefore study (10) from polar coordinate point of view. This allows us to naturally
extend the map Tt into a diffeomorphism at each time t and more easily construct a left inverse.

We now put system (10) into polar coordinates. To this effect, we rewrite the system as

v̇ = −v +Ψ(v) + I, (37)

where Ψ the non-linear integral part of f . For any ϕ ∈ [0, 2π) we have

Ψ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 v

 =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

Ψ(v), (38)

which is obtained simply through the change of variable θ′ = θ + ϕ in the periodic integrals. To
take advantage of the above observation, we introduce the following quantities, for j, p ∈ N,

Γj
p(v0, ρ) =

∫
Ω

rj cos(2θ)jσ(p)(v0 + rρ cos(2θ))P (r)
dθdr

π
, v0 ∈ R, ρ ≥ 0. (39)

Here, σ(p) denotes the p-th derivative of the real-valued function σ, in particular σ(0) = σ. Letting
v1:2 = ρeϕ with eϕ = (cosϕ, sinϕ)⊤, via (38) above we obtain

Ψ(v) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

Ψ

 v0
|v1:2|
0

 =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

J0Γ
0
0(v0, ρ)

J1Γ
1
0(v0, ρ)
0

 . (40)

Here, we used the fact that∫
Ω

r sin(2θ)σ(v0 + rρ cos(2θ))
dθ

π
P (r)dr = 0, ∀ρ ≥ 0. (41)

As a consequence, the dynamics (10) reads
v̇0 = −v0 + J0Γ

0
0(v0, |v1:2|) + I0,

v̇1:2 = −v1:2 + J1Γ
1
0(v0, |v1:2|)

v1:2
|v1:2|

+ I1:2.
(42)

The following lemma presents some basic facts about the non-linearities Γj
p introduced in (39).

Lemma 4.1. The following assertions hold.

(i) The quantities Γj
p are well defined for all j, p ∈ N and belong to the class C∞(R× [0,∞),R).

(ii) We have the following relations

∂v0Γ
j
p = Γj

p+1 and ∂ρΓ
j
p = Γj+1

p+1, ∀j, p ∈ N. (43)

(iii) For any v0 ̸= 0, the function Γ0
0(v0, ·) ∈ C∞([0,∞),R) is injective.

(iv) For any v0 ̸= 0 and ρ > 0, we have Γ1
1(v0, ρ) ̸= 0 and of opposite sign w.r.t. v0. Moreover,

Γ1
1(v0, 0) = 0 for any v0 ∈ R.

(v) For any ρ ≥ 0, we have Γ0
0(0, ρ) = 0.

Proof. We start with points (i) and (ii). For for j, p ∈ N, we set

γj
p(v0, ρ, r, θ) := σ(p)

(
v0 + rρ cos(2θ)

)
rj cos(2θ)jP (r), v0 ∈ R ρ ∈ [0,∞), r ∈ [0,∞), θ ∈ S1,

(44)

11



From our assumptions on σ (see (3)), for any fixed θ and almost every r, the function γj
p(·, r, θ) is

C∞(R× [0,∞),R) and verifies

∂v0γ
j
p(·, r, θ) = γj

p+1(·, r, θ), and ∂ργ
j
p(·, r, θ) = γj+1

p+1(·, r, θ). (45)

Furthermore, using the boundedness of σ(p) we see that

|σp
(
v0 + rρ cos(2θ)

)
rj cos(2θ)jP (r)| ≤ ∥σ(p)∥∞rjP (r). (46)

Using the fact that P is a compactly supported probability density, the above allows to apply
Lesbegue dominated convergence theorem, which yields the claim.

Point (iii) is a direct consequence of point (iv) as (ii) implies ∂ρΓ
0
0(v0, ·) = Γ1

1(v0, ·), so we
turn to a proof of (iv).

From Assumption 2.1 on σ, by remarking that σ′ is even, strictly increasing on (−∞, 0) and
strictly decreasing on (0,∞) with σ′(0) = supR σ′, we get that:

σ′(v0 + rρU)− σ′(v0 − rρU) < 0, ∀ρ > 0, if v0 > 0,

σ′(v0 + rρU)− σ′(v0 − rρU) > 0, ∀ρ > 0, if v0 < 0,

σ′(v0 + rρU)− σ′(v0 − rρU) = 0, if ρv0 = 0.

(47)

We have then, using the fact that r and P (r) are positive, that
Γ1
1(v0, ρ) < 0, ∀ρ > 0, if v0 > 0,

Γ1
1(v0, ρ) > 0, ∀ρ > 0, if v0 < 0

Γ1
1(v0, ρ) = 0, if ρv0 = 0.

(48)

This completes the proof of (iv).
Finally, point (v) follows at once from direct computations and the parity of σ, which yields

Γ0
0(0, ρ) =

∫
Ω

σ(rρ cos(2θ))P (r)
dθdr

π
= 0. (49)

Remark 4.2. As already mentioned, our results are true without the compact support assumption
on P . The results can be obtained with the assumptions that the maximal moment of P , which we
denotes m, is greater then 3. Indeed, the above result still holds, supposing that the distribution
P has a moment m greater or equal then 2. Indeed by replacing point (i) by the fact that Γj

p is

well defined for all j ≤ m and has regularity C(m−j)(R× [0,∞),R).
We are now in a position to prove Propositions 3.1 and 3.2.

Proof of Proposition 3.1. Let v and ṽ be two solutions of (10). Let us prove (i). From Lemma 4.1,
Γ0
0 ≡ 0. Using Equation (58), the set Z0 = {v ∈ R3, v0 = 0} is stable by the dynamic f as I0(t) = 0

for all times t ≥ 0. Therefore for solution initialised in the set Z0 the dynamic can be reduced to
the close form

v̇1:2 = f1:2((v0, v1, v2), I(t)), v0 = 0, (50)

which admits a unique solutions for any initial condition v1:2(0) ∈ R2 as f is globally Lipschitz
continuous from 2.4. There exist then solutions of (10) such that

v0(t) = v0(t), ∀t ≥ 0, and v(t) ̸= ṽ(t), ∀ t ≥ 0. (51)

Let us now prove point ii. By assumption, it holds

v0(t) = ṽ0(t) for t ∈ [0, t∗]. (52)
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In particular, v̇0 ≡ ˙̃v0 on (0, t∗). Hence, using the first equation of (42) and the fact that J0 ̸= 0,
we obtain that

Γ0
0(v0(t), ρ(t)) = Γ0

0(v0(t), ρ̃(t)) for t ∈ [0, t∗]. (53)

For t ∈ I = {t ∈ [0, t∗] : v0(t) ̸= 0}, point (iii) of Lemma 4.1 guarantees that Γ0
0(v0(t), ·) is

injective, and thus that
ρ(t) = ρ̃(t), for t ∈ I. (54)

This proves that |v1:2| = |ṽ1:2| for t ∈ I. Differentiating this equality, which is possible since I
is a relatively open subset of [0, t∗], and using again (42) allows to conclude the first step of the
proof.

Proof of Proposition 3.2. From (39) we have Γ0
0(v0, 0) = σ(v0). From Lemma 4.1 one has for all

ρ ≥ 0 that Γ1
1(v0, ρ) ≤ 0 (respectively Γ1

1(v0, ρ) ≥ 0) for all v0 ≥ 0 (respectively for all v0 ≤ 0).
From the fact that ∂ρΓ

0
0 = Γ1

1 and by continuity, this yields

|Γ0
0(v0, ρ)| ≤ |σ(v0)|, ∀(v0, ρ) ∈ R× [0,∞). (55)

From Assumption 2.1 on σ, one has |σ(v0)| ≤ σ′(0)|v0|. Substituting this in (42), together with
the lower bound on I0(t) yields

v̇0 ≥ −|v0| − |J0|σ′(0)|v0|+ c, (56)

whence, for any solution v(·) of (10) with an input satisfying the assumptions of the proposition,

v̇0(t) > 0 for all t such that |v0(t)| < δ∗ . (57)

Similarly, the time estimation is obtained from applying Grönwall’s lemma to (56).
Now, consider a solution v(·) and remember that δ > 0 is smaller than δ∗. If v0(0) < −δ,

either v0(0) remains smaller than −δ for all time, and we are in the first case of the proposition,
or there is a smaller time t1 > 0 such that v0(t1) = −δ, and in that case, (57) implies that we
must be in the second case of the proposition because v0(t) increases as long as it is smaller than
δ∗, hence it passes through δ at some finite time t2 and never becomes smaller than δ in the
future. If −δ ≤ v0(0) < δ, by the same argument, there is a time t2 so that v0(t) has the behavior
describes as the third case of the Proposition, and if v0(0) ≥ δ, which is the last possibility, the
same arguments tell us that v0(t) is larger than δ for all positive t.

5 The observability mapping

In this section we focus on the observability of system (10). For any solutions of (10) with
measurement h(v) = v0, we want to show the injectivity between the function v0(·) and its time
derivatives, up to certain order, with the solution v(·).

To do so, we look at the properties of the mapping T defined in (19), and in particular we aim
at constructing the pseudo-inverse of Theorem 3.10. In order to do so, we start by extending Tt

to a diffeomorphism, for each time t ≥ 0.

5.1 Observability mapping extension and differential observability

From the symmetry of the system, we want to study T from a polar coordinate point of view.
Letting X = (v0, ρ, eϕ)

⊤ ∈ R × (0,∞) × {ζ ∈ R2 : |ζ|2 = 1}, (recall v1:2 = ρeϕ with eϕ =
(cosϕ, sinϕ)⊤), we obtain from (42) the following dynamics in polar coordinates

Ẋ =

 −v0 + J0Γ
0
0(v0, ρ) + I0

−ρ+ J1Γ
1
0(v0, ρ) + I⊤1:2eϕ

1
ρ (−(I⊤1:2eϕ)eϕ + I1:2)

 . (58)
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We can naturally extend (58) by changing the variable eϕ ∈ S1, where S1 is the unit circle of

R2 to ζ ∈ R2. We obtain then a new dynamic Ẋ = F (X, t) on R× (0,+∞)× R2 as follow

F (X, t) =

 −v0 + J0Γ
0
0(v0, ρ) + I0

−ρ+ J1Γ
1
0(v0, ρ) + I⊤1:2ζ

1
ρ (−(I⊤1:2ζ)ζ + I1:2)

 , where X =

v0
ρ
ζ

 ∈ R× (0,+∞)× R2. (59)

We define
X := R∗ × (0,∞)× R2. (60)

Let us assume that I ∈ C2([0,+∞),R3). With L the operator defined in (18), and omitting
the arguments of Γj

p (defined in (39)), we define St : X → R4 by

[St(X)]0 = v0

[St(X)]1 =− v0 + J0Γ
0
0 + I0

[St(X)]2 =− F0 + J0Γ
0
1F0 + J0Γ

1
1F1 + İ0

[St(X)]3 =− LF0 + J0Γ
0
1LF0 + J0Γ

0
2(F0)

2

+ 2J0Γ
1
2F1F0 + J0Γ

1
1LF1 + J0Γ

2
2(F1)

2 + Ï0.

(61)

From direct computations, one can see that for any t ≥ 0, any X ∈ R∗× (0,+∞)×{ζ ∈ R2 : |ζ| =
1} → R4 it holds

St (X) := Tt(X0, X1X2:3). (62)

Recall that by Assumption 3.7 we can fix an arbitrary large R > 0 such that BR3(0, R) is an
invariant attracting set for (10). For any δ > 0, η > 0, we set

Xδ,η = {(v0, ρ, ζ) ∈ X : δ ≤ |v0| ≤ R, η ≤ ρ ≤ R, |ζ| ≤ R}. (63)

We then have the following.

Theorem 5.1. Assume I ∈ C2([0,+∞),R3). Let t ≥ 0 be such that I1:2(t) ∧ İ1:2(t) ̸= 0. The
map St : X → R4 is a C∞ diffeomorphism onto its image. In particular, under Assumption 3.7
the map St is invertible for all times t ≥ 0 and the inverse S−1

t : St(X ) 7→ X satisfies

sup
t

{
∥∂zS−1

t (z)∥ : z ∈ St(Xδ,η)
}
< ∞. (64)

Proof. Let t ≥ 0 be such that I1:2(t) ∧ İ1:2(t) ̸= 0. The map St is defined as composition of the
functions Γj

p and LiF , 0 ≤ i ≤ 2. From equation (59), F is defined for all X ∈ X . As such,
it is C∞ over X . In the following we denote elements of X by X = (v0, ρ, ζ), where v0 ∈ R∗,
ρ ∈ (0,+∞), and ζ ∈ R2.

Step 1. Injectivity of St. Let X, X̃ ∈ X be such that St(X) = St(X̃). We will compare term by
term the expression of St given in (61). Observe that since v0 ̸= 0 by definition of X , Lemma 4.1
implies injectivity of Γ0

0(v0, ·) over (0,∞) and Γ1
1(v0, ·) ̸= 0.

By the expression of the first two components of St, we immediately have

v0 = ṽ0 and ρ = ρ̃.

Using the expression (59) of F one verifies that all terms in the expression of [St]2 depend only
on ρ and v0, except Γ

1
1(v0, ρ)F1(X, t). The fact that Γ1

1(v0, ρ) ̸= 0, and the expression of F1(X, t)
then implies that

I⊤1:2ζ = I⊤1:2ζ̃. (65)

We now turn to the expression of [St]3. By using again the expression (59) of F , eliminating all
terms that depend only on ρ and v0, and using the fact that Γ1

1(v0, ρ) ̸= 0, we obtain LF1(X, t) =
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LF1(X̃, t), which is the term that contains the last unknown term. Developing this expression and
using (65), we obtain

İ⊤1:2ζ = İ⊤1:2ζ̃. (66)

Putting together (65) and (66), we finally obtain[
I⊤1:2
İ⊤1:2

] [
ζ − ζ̃

]
= 0.

This implies that ζ = ζ̃ since I1:2(t) ∧ İ1:2(t) ̸= 0. This ends the proof of the injectivity.
Step 2. St is a diffeomorphism onto its image. As we have seen that St is differentiable and

injective, by the rank theorem we just need to show that its differential ∂XSt is of maximal rank
on X . For any X = (v0, ρ, ζ) ∈ X , direct computations yield

∂XSt(X) =

1 0 01×2

⋆ J0Γ
1
1(v0, ρ) 01×2

⋆ ⋆ J0Γ
1
1(v0, ρ)G(v0, ρ, ζ)

 . (67)

Here, we let 01×2 = (0, 0) ∈ R1×2, and

G(v0, ρ, ζ) :=

[
I⊤1:2
İ⊤1:2

]
+ Ũ(v0, ρ, ζ)

[
01×2

I⊤1:2

]
(68)

for some function Ũ . We omit the expressions noted as (⋆) in (67) as they do not intervene at this
level.

As we are under (3) and X ∈ X , we have Γ1
1(v0, ρ) ̸= 0 by Lemma 4.1. Therefore as the

Jacobian matrix of S is triangular by block, to prove that it is invertible we are left to prove the
invertibility of G(v0, ρ, ζ). This follows by assumption, since

detG(v0, ρ, ζ) = İ1:2 ∧ I1:2 ̸= 0 (69)

Therefore St is an immersion in X .
Step 3. Estimates on the inverse with respect to time. The inverse diffeomorphism S−1

t defined
on St(X ) is such that ∂zS

−1
t (z) = (∂XSt(S

−1
t (z)))−1. Since the dependence on t of ∂XSt is only

due to the presence of I1:2, İ1:2, I0 and İ0, and recalling that J0Γ
1
1 is non null, we rewrite it as

follows (we omit the dependencies on (v0, ρ, ζ)):

∂XSt(X) =

 1 0 01×2

α J0Γ
1
1 01×2

J0Γ
1
1β(I) J0Γ

1
1γ(I) J0Γ

1
1G(I)

 =

1 0 01×2

α J0Γ
1
1 01×2

0 0 J0Γ
1
1 Id2


︸ ︷︷ ︸

=:M

 1 0 01×2

0 1 01×2

β(I) γ(I) G(I)


︸ ︷︷ ︸

=:N(I)

,

(70)
for some function α independent of the input I and functions β, γ depending on I and its first
derivative. Here, we denoted by G(I) the matrix in (68), in order to stress its dependency on I.
This expression yields that

|∂zS−1
t | ≤ |N(I)−1||M−1|

Observe that M is continuous on X (albeit singular if ρv0 = 0), and thus ∥M−1∥St(Xδ,η) ≤ c for
some constant c > 0 depending only on δ and η. Moreover,

N(I)−1 =

 1 0 01×2

0 1 01×2

−G−1(I)β(I) −G−1(I)γ(I) G−1(I)

 .

The lower bound on the determinant of G given by Assumption 3.7 together with the fact that I
and İ are uniformly bounded with respect to time allows then to conclude.

15



We now prove Theorem 3.5 as a corollary of Theorem 5.1. Recall the notations Z0 = {v ∈
R3, v0 = 0} and Z1:2 = {v ∈ R3, v1 = v2 = 0}.

Proof of Theorem 3.5. Let v ∈ R3 \ Z0. Suppose at first ρ = |v1:2| > 0. We have by construction
that Tt(v) = St(X) where X = (v0, ρ,

v1:2
ρ ) ∈ M := R∗ × (0,+∞)× {|ζ| = 1}. Since Theorem 5.1

guarantees that St is a diffeomorphism of X on St(X ), it is therefore an injective immersion when
restricted to the sub-manifold of dimension 3 M ⊂ X . It follows that Tt is also an injective
immersion for v ∈ R3 \ (Z0 ∩ Z1).

If |v1:2| = 0, let ṽ be such that Tt(v) = Tt(ṽ). By computing the first two elements of the
expression of Tt, one deduces that Γ0

0(v0, |v1:2|) = Γ0
0(v0, |ṽ1:2|). We deduce from Lemma 4.1

that this function is injective, hence that |v1:2| = 0. Thus, v = ṽ and Tt is indeed injective on
R3 \ Z0.

We can now prove the observability of the system as stated in Proposition 3.4.

Proof of Proposition 3.4. We start by proving (ii) ⇒ (i). To this aim, let v and ṽ be two solutions
of (10) such that h(v(t)) = h(ṽ(t)) for all t ∈ [0, t∗]. By the definition of Tt in (19) we have that
Tt(v(t)) = Tt(ṽ(t)) for all t ∈ [0, t∗]. By assumption and by continuity of t 7→ I1:2(t)∧ İ1:2(t) there
exists an open interval I ⊂ [0, t∗] such that I1:2(t) ∧ İ1:2(t) ̸= 0 for all t ∈ I. By the fact that
I0(t) ≥ c and Proposition 3.2, it follows that there exists t0 ∈ I such that v0(t0) ̸= 0. Thus, by
Theorem 3.5 it follows that Tt0 is injective. This yields v(t0) = ṽ(t0), which proves the claim by
uniqueness of solutions of (10).

We now turn to an argument (i) ⇒ (ii). In this case, due to the assumption that I0(t) > c for
all t ≥ 0, we get from Proposition 3.2 that there exist at most a single time tc ≥ 0 where v(tc) = 0.
From Proposition 3.1 we have that |v1:2| = |ṽ1:2| and I⊤1:2v = I⊤1:2ṽ a.e. If v and ṽ are two distinct
solutions of (10) such as v0 = ṽ0 and I1:2(0)

⊤(v1:2(0)− ṽ1:2(0)) = 0 then it is direct to see that

h(v(t)) = h(ṽ(t)), ∀t ≥ 0 & v(t) ̸= ṽ(t), ∀t ≥ 0, (71)

which ends the proof.

5.2 The pseudo-inverse

The goal of this section is to construct a pseudo-inverse of the observability mapping Tt, that is,
to construct a Lipschitz map Tt : R4 → R3 such that Tt ◦ Tt is the identity on (most of) R3. This
map Tt is a fundamental building block of our observer. Under the assumptions of Theorem 5.1,
it is not difficult to provide an inverse of the map Tt since, letting Φ(X) := (X0, X1X2, X1X3) for
X ∈ R4, it holds

Φ ◦ S−1
t ◦ Tt = Id on R3 \ Z. (72)

The above cannot be directly used to obtain a Lipschitz inverse since, as can be seen in the proof
of Theorem 5.1, the Lipschitz constant of S−1

t blows up when ρ or v0 are small. However, S−1
t

is Lipschitz on St(Xδ,η), which suggests defining an inverse via (72) by inserting a projection
on St(Xδ,η) in the definition. However, due to the complicated structure of St(Xδ,η), this is
unpractical, and thus we resort to the following definition for the pseudo-inverse Tt:

Tt = Φ ◦ cut ◦S−1
t ◦Πt. (73)

Here, Πt is a projection depending on the output y(t) = v0(t) and cut is an appropriate cut-off
function, bounding the non-linear part in the observer and thus insuring that trajectories do not
explode in finite time.

Namely, observe that a necessary condition for z to belong to St(Xδ,η) is that

|z0| > δ, and

{
J0Γ

0
0(z0, R) ≤ z1 + z0 − I0 ≤ J0Γ

0
0(z0, η) if z0 > 0,

J0Γ
0
0(z0, η) ≤ z1 + z0 − I0 ≤ J0Γ

0
0(z0, R) if z0 < 0.

(74)
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Hence, Πt : R4 → R4 is defined as the projection on the above set. That is,

Πt(z)0 =

{
min{R,max{δ, z0}} y(t) ≥ 0,

max{−R,min{−δ, z0}} y(t) < 0,
(75)

Πt(z)1 =

{
gη,R(Πt(z)0, z1), y(t) ≥ 0,

gR,η(Πt(z)0, z1), y(t) < 0,
(76)

Πt(z)2 = z2, (77)

Πt(z)3 = z3. (78)

Here, we let the auxiliary function g to be defined by

gρ1,ρ2(z0, z1) =


J0Γ

0
0(z0, ρ1)− z0 + I0 if z1 > J0Γ

0
0(z0, ρ1)− z0 + I0,

J0Γ
0
0(z0, ρ2)− z0 + I0 if z1 < J0Γ

0
0(z0, ρ2)− z0 + I0,

z1 otherwise.

(79)

It is clear that Πt is a Lipschitz function with Lipschitz constant uniformly bounded w.r.t. time.
The image of the projection Πt fails to be in St(Xδ,η) due to not respecting the R upper bound

in its last two components. Although we can still inverse S−1
t on the image of Πt, in order to

avoid solutions of the observer (30) from blowing up in finite time, we add an additional cut-off.
Let p : R → [0, 1] be a smooth function such that p(x) = 1 if |x| ≤ R − 1, p(x) = 0 if |x| ≥ R
(recall R has been assumed to be arbitrarily large, and in particular larger than 3). Then

cut(X) = (X0, X1, p(|X2:3|)X2:3). (80)

We are now in a position to prove Theorem 3.10.

Proof of Theorem 3.10. For each t ≥ 0, the function Tt : R4 → R3 introduced in Equation (73) is
well defined. Since Πt(R4) = St({X ∈ R4, |v0| > δ, η < ρ < R, ζ ∈ R2}) where the inverse S−1

t is
well defined and C∞ due to Theorem 5.1, it is a composition of continuous functions. The image
of the map Tt is

Tt(R4) = Φ ◦ cut ◦S−1
t ◦Πt(R4) = Φ(Xδ,η) ⊂ {δ ≤ |v0| ≤ R} ×BR2(0, R2). (81)

Moreover Tt is globally Lipschitz continuous. Indeed, it is a composition of locally Lipschitz
functions. The map S−1

t ◦ Πt is not globally Lipschitz continous however (due to the last two
components). By construction of the cut-off function, we have

∥∂z cut ◦S−1
t ∥Πt(R4) = ∥(∂X cut)(∂zS

−1
t )∥St(Xδ,η) ≤ ∥∂X cut∥ ∥∂zS−1

t ∥St(Xδ,η). (82)

Since Φ is smooth and thus locally Lipschitz continuous, and cut ◦S−1
t ◦ Πt(R4) ⊂ Xδ,η, we have

by construction that Tt is a globally Lipschitz continuous map for every time t. We also have that
Πt being globally Lpischitz continous uniformly with respect to time. Hence, as a consequence
of (82) and Theorem 5.1, Lipschitz constant for Tt exhibits uniform boundedness with respect to
time.

We now provide an argument for (28). Let z = Tt(v) for some v ∈ R3 such that v0 has the same

sign as the input y(t) and |v0| > δ. If η < |v1:2| ≤ R, since Πt(z) = z, S−1
t (z) =

(
v0, |v1:2|, v1:2

|v1:2|

)
.

It is then immediate to check that (73) reduces to (72), that is Tt(z) = v. On the other hand, if
0 < |v1:2| ≤ η, direct computations show that

Tt(z)− v =

(
0, (η − |v1:2|)

v1:2
|v1:2|

)
=⇒ |Tt(z)− v| ≤ η. (83)

By continuity, the above inequality extends to |v1:2| = 0.
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6 Observer convergence

In this section we prove Theorem 3.12 concerning the convergence properties of Observer (30).
We need the following Lemma, insuring that the non-linear part of the observer is globally

Lipschitz.

Lemma 6.1. Under Assumption 3.7, for every t ≥ 0 the map (L4h)t ◦ Tt : R4 → R is Lipschitz
continuous uniformly with respect to time. Here, we let (L4h)t := (L4h)(·, t).

Proof. Observe that (L4h)t is well-defined for t ≥ 0, since I ∈ C3([0,+∞),R3) by Assump-
tion 3.7. Moreover, (L4h)t is locally Lipschitz, uniformly with respect to time. Indeed, being
the composition of smooth functions, (L4h)t is locally Lipschitz (actually smooth) for any t ≥ 0.
The uniformity with respect to time follows by observing that the time dependent terms in the

Jacobian matrix ∂v(L4h)t are linear combinations of I
(j)
i , i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}, which

are bounded in time by Assumption 3.7.
Observe that by Theorem 3.10 the map Tt is globally Lipschitz, uniformly with respect to

time, and has bounded image. Therefore, L4h ◦Tt is also globally Lipschitz continuous uniformly
with respect to time.

We now prove the well definiteness of the observer (30).

Proof of Proposition 3.11. Thanks to Lemma 6.1 the first equation of (30) has globally defined
solutions. The same is true for the second equation by Proposition 2.4. By Proposition 3.2 we
have that there exists at most two times t2 > t1 ≥ 0 such that y(t1) = −δ and y(t2) = δ. Hence,
v̂ is piece-wise continuous with at most two jump discontinuities. However, v̂ is continuous at t1.
Indeed, in this case the initial condition after the switch of dynamics is v̂(t+1 ) = Tt(ẑ(t

−
1 )). This

completes the proof.

Remark 6.2. Let t2 be the time such that y(t2) = δ. In this case, when switching dynamics in the
observer (30) we have ẑ(t+2 ) = Tt(v̂(t

−
2 )). This can induce a discontinuity in v̂ since

v̂(t+2 ) = Tt(ẑ(t
+
2 )) = Tt ◦ Tt(v̂(t

−
2 )). (84)

Indeed, it could happen that |v̂1:2(t−2 )| < η, and thus Theorem 3.10 cannot be used to guarantee
that Tt ◦ Tt(v̂(t

−
2 )) = v̂(t−2 ).

We are now in position to prove Theorem 3.12. This proof follows the conventional proof of the
convergence of high gain design (see [19], [7] or [10] for example) with the necessary modifications
to address the singularities associated with the set Z.

Proof of Theorem 3.12. As 0 < δ < δ∗ and 0 < η < R, we proved in Proposition 3.11 that, under
these assumptions, solutions of (30) are well defined globally.

We start by proving Point (i). We suppose at first that the output verifies y(t0) ≥ δ. From
Proposition 3.2 it follows that y(t) ≥ δ for every time t ≥ t0.

Since we are assuming y(t) ≥ δ, by Theorem 3.10 and by the fact that z = Tt(v) and v0(t) =
y(t), we have

|v − v̂| ≤ |v − Tt(z)|+ |Tt(z)− Tt(ẑ)| ≤ ηχ(v) +M0|z − ẑ|, (85)

where M0 > 0 is a uniform bound of the Lipschitz constant of Tt, which depends on η and δ. We
are thus left to estimate |z − ẑ|. We define e := ẑ − z and consider for any l > 0 the following
Lyapounov function candidate

∥e∥2l := e⊤Ple, (86)

where Pl is the matrix with elements Pl(i, j) :=
(−1)i+j

li+j−1 · (i+j−2)!
(i−1)!(j−1)! , for i, j ∈ {1, 2, 3, 4}. From

Lemma 6.1, we can set L > 0 to be an upper bound for the Lipschitz constant of (L4h)t on the
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compact set U := {(u0, u1, u2) ∈ R3, δ ≤ |u0| ≤ R and η ≤ |u1:2| ≤ R2}, which can be chosen to
be uniform with respect to time t ≥ 0. Then, since y = Cz, it holds

1

2

d∥e∥2l
dt

= e⊤Pl(A− P−1
l C⊤C)e+ e⊤PlW

(
(L4h)

(
Tt(ẑ)

)
− (L4h)(v)

)
,

= − l

2
∥e∥2l + e⊤PlW

(
(L4h)

(
Tt(ẑ)

)
− (L4h)(v)

)
,

≤ − l

2
∥e∥2l +

√
νmax

νmin
LM0∥e∥2l + χ(v)Ll−7/2η∥e∥l.

(87)

Here, on the second line we used the fact that PlA+ A⊤Pl − C⊤C = −lPl. The last line follows
by Cauchy-Schwarz inequality and (85), thanks to the estimates

∥W∥l ≤ l−7/2√νmax and l−7νmin Id4 ≤ Pl ≤ l−1νmax Id4 . (88)

Here, νmax and νmin are respectively the max and the min eigenvalue of P1.

We denote l∗ := 2
√

νmax

νmin
LM0, and M := M0

max{1,√νmax}√
νmin

. Dividing both sides of (87) by ∥e∥l,
we can apply a linear Grönwall’s inequality to the variation of ∥e∥l. Since ∥e∥l ≥ νminl

−7|ẑ − z|
and we have (85), we obtain the following estimation in the immersed domain, for t ∈ [t0, tf ],

|v(t)− v̂(t)| ≤ ηχ(v(t)) +Me−(l−l∗)t

(
l3|ẑ(t0)− z(t0)|e(l−l∗)t0 +

∫ t

t0

e(l−l∗)sLηχ(v(s)) ds

)
. (89)

Using that z(t) = Tt(v(t)) for all times t ≥ t0 yields the first part of the point.
We now deal with the error increase during the switch. We recall that t1 := inf{t ≥ 0 : |y(t)| <

δ} = inf S and t2 = supS. We suppose now that 0 < t1 < ∞. We recall that by Proposition 3.2,
it holds t2 ≤ t1 + tδ, and y(t) ≥ δ for all times t ≥ t2. If a switch occurs, the initial condition at
t1 for the second dynamics in (30) is v̂(t+1 ) = Tt(ẑ(t

−
1 )). The solution v̂ is therefore well defined

in the interval [t1, t2] and continuous, since f is uniformly Lipschitz and y(·) is strictly increasing.
Let L1 > 0 be the Lipschitz constant of Tt on the compact set U , which is uniform with respect

to time thanks to Assumption 3.7 (see, e.g., proof of Lemma 6.1). Then, since ẑ(t−2 ) = Tt2(v̂(t
−
2 ))

and z(t2) = Tt2(v(t2)), we have

|ẑ(t−2 )− z(t−2 )| ≤ L1|v̂(t−2 )− v(t−2 )|. (90)

Letting L2 > 0 be the Lipschitz constant of f(·, t) on the compact U , which is uniform with respect
to time (see, e.g., Proposition 2.4), we have

|v̂(t−2 )− v(t−2 )| ≤ e(t2−t1)L2 |v̂(t1)− v(t1)| ≤ etδL2 |v̂(t1)− v(t1)|. (91)

We have therefore characterised a bound of the error for all times t ≥ 0 using both relations (89)
and (91).

Let us establish Point (ii) of the theorem. Under the assumptions of the statement, χ(v(t)) = 0
for all times t ≥ 0. Recalling that S = [t1, t2], we will distinguish two cases: t1 = 0 or t1 > 0. In
the first case, by the second part of Point (i), for any t ≤ t2 we have

|v̂(t)− v(t)| ≤ eL2tδ |v̂(0)− v(0)| ≤ e(L2+(l−l∗))tδe−(l−l∗)t|v̂(0)− v(0)|. (92)

Here we used that e−(l−l∗)t1 ≤ e−(l−l∗)te(l−l∗)tδ as t ≤ t2. Letting now t ≥ t2 and using the first
part of Point (i) with t0 = t2 we get

|v̂(t)− v(t)| ≤ Ml3e(L2+(l−l∗))tδe−(l−l∗)t|v̂(0)− v(0)|. (93)

Hence, the statement stands proved in this case, with k = Ml3e(L2+(l−l∗))tδ . The argument for
the case t1 > 0 is similar, except that one has to start by applying the first part of Point (i) to
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t ∈ [0, t1], then plug this estimate in the error during the switching time for t ∈ [t1, t2], and finally
reapply the first part of Point (i) to obtain the estimate for t ≥ t2.

We finally provide an argument for Point (iii). We start by observing that, since v(0) ∈
BR3(0, R) and v̂ is initialized in the compact set K, it holds |ẑ(0) − z(0)| ≤ L1(diam(K) + R).
Then, one proceeds exactly as for the previous point except that instead of having χ(v(t)) = 0 for
all t > 0, one uses the trivial bound χ(v(t)) ≤ 1. This leads to the following estimates:

e−(l−l∗)t

∫ t

0

e(l−l∗)sχ(v(s)) ds ≤ 1

l − l∗
and e−(l−l∗)t

∫ t

t2

e(l−l∗)sχ(v(s)) ds ≤ 1

l − l∗
(94)

We assume δ to be sufficiently small, to be fixed later, so that tδ < t∗. In the case where the
first switching time t1 is positive, letting C > 0 be a constant independent of δ, η, and l one then
obtains that for any t ∈ [t∗, t2] ∪ (t2 + t∗,+∞) it holds

1

C
|v̂(t)− v(t)| ≤ η

(
1 +Ml3eL2tδe−(l−l∗)t∗

(
1 +

M

l − l∗

)
+

M

l − l∗

)
+M2l6e(L2+(l−l∗))tδe−(l−l∗)t.

(95)
Here, one has to be careful due to the fact that M depends on η, and in particular M → +∞ as
η ↓ 0. One starts by fixing η < ε/(4C). Then, with η fixed, one chooses l sufficiently large so that

M2l6e−(l−l∗)t ≤ ε

4C
. (96)

Assuming that l − l∗ ≥ 1, this also implies that M/(l − l∗) ≤ 1, so that (95) implies

|v̂(t)− v(t)| ≤ ε

4

(
2 + l−3eL2tδ

ε

2C

)
+

ε

4
e(L2+(l−l∗))tδ . (97)

Then, assuming l is large enough so that l−3ε/2C < 1, yields

|v̂(t)− v(t)| ≤ ε

(
1

2
+

e(L2+(l−l∗))tδ

2

)
. (98)

Finally, since tδ tends to 0 as δ tends to 0, we can fix δ > 0 such that e(L2+(l−l∗))tδ ≤ 1. This
completes the proof in this case.

The case where t1 = 0 is treated similarly. Here, for any time t < t2 the second part of Point (i)
only yields a uniform constant bound. However, for any t > t∗ > t2, we obtain

1

C
|v̂(t)− v(t)| ≤ η

(
1 +

M

l − l∗

)
+Ml3e(L2+(l−l∗))tδe−(l−l∗)t. (99)

Here, C > 0 can be taken to be the same constant as in (95). It is then easy to see that the choice
of η, l, and δ, considered in the case t1 > 0 imply the statement also in this case.

7 Numerical Simulations

We propose a numerical simulation for the observer (30). The parameters of the dynamical
system (10) were chosen as such: J0 = −1, J1 = 1.5, σ = tanh(µ · −h0) with the non linear
gain µ = 10 and the threshold h0 = 1. The distribution P has been chosen as the Dirac mass
P = δr=1 for theoretical purposes. The input has been chosen as I0(t) = ε(1 − β), I1:2(t) =
βε

(
cos( 2π10 t), sin(

2π
10 t)

)
, with β = 10−1 and ε = 10−1. The initial condition was taken as v(0) =

(−3, 2.5,−2) so that the output verifies y(0) < −δ to show the switching mechanism. The timescale
has been chosen as τ = 5 for theoretical purposes to better show the error increase during the
switch.

The initial condition of the observer was taken as v̂(0) = (−5, 2,−1), ẑ(0) = T0(v̂(0)). As
J0 < 0, we chose δ = 3 ∗ 10−1, which is greater then the robust bound of Proposition 3.2 (See the
remark thereafter). The inversion error was taken η = 10−3, the high gain l = 15. The numerical
scheme chosen was an explicit RK4 with a step of 10−5. The resulting trajectory v̂ is shown in
Figure 2 for t ∈ [0, 4].
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Figure 2: Left-hand side: components of the simulated trajectories of System (10) (plain lines) and
Observer (30) (dashed lines). Right-hand side: plot of the estimation log-error. This particular
solution satisfies point (ii) of the theorem. The switching time occur at t1 ≃ 1.2 and t2 ≃ 1.8.
Peaking phenomena occur at the start of the simulation and at time t2, when the high-gain observer
restarts; they are better seen on the log-error plot. Since the error peaking at t2 is proportional
to the error at t1, it is much smaller in size. At the beginning of the trajectory, v̂1, v̂2 are set to 0
due to the cut-off (80), until the observer ẑ of the embedded system has sufficiently converged. At
time t1, the observer is turned off and the trajectories of v and v̂ evolve according to the neural
fields dynamics, resulting in a drift of the error over [t1, t2].

A Appendix: Modelisation adjustments

Some authors favor a neural field model for activity instead of post-membrane potential, e.g., [4,
8]. The model is similar to (1):

τ∂tA(x, t) = −A(x, t) + σ
(
J ·A(·, t) + Iext(t)

)
. (100)

Supposing Iext smooth enough, we can easily go from (100) to (1) by considering the change of
variable: V = J ·A+Iext, and replacing Iext with Iext+ İext. We favor (1) because it appears easier
to study from a mathematical point of view. If our measurement is the averaged neural activity
a0 =

∫
Ω
A(u)du, the change of variable V = J ·A+Iext leads to

∫
Ω
V (u)du = ⟨A, J ·1⟩+ ⟨Iext, 1⟩ =

J0a0 + I0. Therefore knowing the parameters J0 and I0, we can retrieve the mean membrane
potential v0 based on measurement not done in voltage but in spark per second (activity).

We also have some freedom in changing the shape of the nonlinearity. Some model choose
sigmoidal functions σ+ : R → R that are strictly positive, strictly increasing (i.e., σ′

+ > 0),
convex-concave (i.e., xσ′′

+(x) ≤ 0 for all x ∈ R), and such that

lim
x→−∞

σ+(x) = 0, lim
x→+∞

σ+(x) = 1, σ′
+ > 0, max

R
σ′
+ = σ′

+(0).

In this case there exist two parameters s1 > 0 and s2 > 0 such that σ+ = s1σ+s2 where σ satisfies
Assumption 2.1. Therefore, it suffices to replace I0 by I0 + s2 and Ji by Jis1 for i ∈ {0, 1}.

On the other hand, if there is a threshold in the sigmoid function, then there exists a constant
h0 such that σ(·) is replaced by σ(· − h0). Hence, we can always go back to our main equation by
taking the change of variable from v0 to v0 − h0. Replacing then I0 with I0 + h0 maintains the
performed analysis.
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[23] Rasa Gulbinaite, Barkın İlhan, and Rufin VanRullen. “The triple-flash illusion reveals a
driving role of alpha-band reverberations in visual perception”. In: Journal of Neuroscience
37.30 (2017), pp. 7219–7230.

[24] Jeffrey A Herron et al. “Cortical brain–computer interface for closed-loop deep brain stim-
ulation”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering 25.11
(2017), pp. 2180–2187.

[25] Kazunori O’Hashi et al. “Interhemispheric synchrony of spontaneous cortical states at the
cortical column level”. In: Cerebral Cortex 28.5 (2018), pp. 1794–1807.

[26] Agus Hartoyo et al. “Parameter estimation and identifiability in a neural population model
for electro-cortical activity”. In: PLoS computational biology 15.5 (2019), e1006694.

[27] Marcelo Bertalmio et al. “Visual illusions via neural dynamics: Wilson–Cowan-type mod-
els and the efficient representation principle”. In: Journal of neurophysiology 123.5 (2020),
pp. 1606–1618.

[28] Marcelo Bertalmio et al. “Cortical-inspired Wilson–Cowan-type equations for orientation-
dependent contrast perception modelling”. In: Journal of Mathematical Imaging and Vision
63 (2021), pp. 263–281.

[29] Ethan Sorrell, Michael E Rule, and Timothy O’Leary. “Brain–machine interfaces: Closed-
loop control in an adaptive system”. In: Annual Review of Control, Robotics, and Au-
tonomous Systems 4 (2021), pp. 167–189.

[30] Pauline Bernard, Vincent Andrieu, and Daniele Astolfi. “Observer design for continuous-time
dynamical systems”. In: Annual Reviews in Control (2022).

[31] Lucas Brivadis, Antoine Chaillet, and Jean Auriol. “Online estimation of Hilbert-Schmidt
operators and application to kernel reconstruction of neural fields”. In: 2022 IEEE 61st
Conference on Decision and Control (CDC). IEEE. 2022, pp. 597–602.

[32] John R Terry et al. “Neural Field Models: A mathematical overview and unifying frame-
work”. In: Mathematical Neuroscience and Applications 2 (2022).

[33] Cyprien Tamekue, Dario Prandi, and Yacine Chitour. “Reproducibility via neural fields of
visual illusions induced by localized stimuli”. In: arXiv preprint arXiv:2401.09108 (2024).

23


	Introduction
	Modelisation
	General model on V1
	Finite-dimensional reduction in V1
	Main model of study

	Statement of the results
	Observability
	Observer design

	Technical preliminaries
	The observability mapping
	Observability mapping extension and differential observability
	The pseudo-inverse

	Observer convergence
	Numerical Simulations
	Appendix: Modelisation adjustments

